Technical Report

CMU/SEI-92-TR-04
ESC-TR-92-04

= Safviar L i 1 IR IATHITHTE

D-A258 465
L

Software Process
Development and Enactment:
Concepts and Definitions

Peter H. Feiler

& Watts S. Humphrey
September 1992

DTIC
ELECTE
) DEC2 9199?.D
% € S 6

This document hoc been approved

_ for public 1elease ale; its 9 &
dhmibuﬂon 18 unli ‘{%ﬁ {g,

T

SELE i
0S82E-C6

Technical Report

CMU/SEI-92-TR-04
ESC-TR-92-04
September 1992

Software Process
Development and Enactment:
Concepts and Definitions

Peter H. Feiler

Engineering Techniques Program

Watts S. Humphrey

Software Process Research Project

Approved for pubtic releasa,
Distribution unhimitad.

Software Engineering Institute
Carnegie Mellon Univarsity
P~y gh, Mo nsylvania 15213

This tochnical report was prepared for the

SEl Joint Program Offico

ESC/AVS

Hanscom AFB, MA 01731

The ideas and findings in this report should not be constrund as an official
DoD position. It is published in thn intorest of sciantitic and technical
information exchange.

Review and Approval

Thig raport hao bean reviewed and is approved for publication.

FOR THE COMMANDER

At ™

John §. Horman, Capt, USAF
SE! Joint Program Office

The Software £ngineering Institute is sponsorvd by the U.8. apartmant of Delonse.
This report wae funded by the U.S. Dopariment of Defense.
Copyright 2. 1992 by Carnegie Mellon Univeralty.

This document is avaratle through the Dalonse Tachn.cal Informatien Center DTIC provides aasoss to ard tansier of
scienuhic and le hnical information far DoD persannel, Dol wontrasiorn and polentisl aontraciors, snd other U 8 Government
agency persuringl and thelr convaciors To ubtan & copy. pleaso cuniact DTIC direclly Dalense Technical !nformation
Cuntne Atin FDDRA Cameron Btation, Alusandria. VA 22304 6145

Copies of Uus dotumuni are 8lso availabla through the Hatwne! Tuctucal Informatan Sarvica For information on ordorng,
plense contact HTI% dructy Hatonal Yechmcalinformanon surse () S Dopanmant of Commarca, Sptinghald. VA 22161

Copias of this dyr ume it Arm Also avadiable from Nesoarch Accacs Inn 1400 Forbas Avenue, Suite 302, Pittsburgh, PA 18214

Uso of any tradatmares in thus teparn s notintundod 1n any way 1 1nfiiiya un tha nghta of the Yadamark holder

Table of Contents

1 Overview

2 The Software Process Context

2.1 A Framework for Process Definition

2.2 Engineering of Processes
2.3 Enactment of Processes
2.4 Process Properties

3 Software Proccss Detinitions

3.1 Framework for Process Definition

3.2 Engineering of Processes
3.3 Enactment of Processes
3.4 Process Properties

4 Domain-Specific Use of Process Concept Definitions

4.1 Project Management Domain

4.2 Operating System Domain

4.3 Process Engineering Domain
5 Conclusions

6 Acknowledgments

References

CMU.SEI-92 TR-4

e e .t
- e ey

————
AlCieio:, iur

Ufl'.; i:
Lod o Toad
Jastheain,,

P — e e m e L T o

Distibutio. |

A\’.‘Jllf:b!'!'y oo

<d

- ___4

—— - . .-
ij'S ":\u'".k\.i:l ' —~——

=
Y

19
19
20
20
25

27

29

List of Figures

Figure 2-1 Structure of Process Concepts 3
Figure 3-1 Process Entities and Actions 9
Figure 4-1 Process Term Sample in the Operating System Domain 22

CMU-SEI-92-TR-& - "

Software Process Development and Enactment:
Concepts and Definitions

Abstract: The scientific treatment of the software process is relatively new
and, as with any new field, the initial terminology is often confusing. When
terms can have a diversity of meanings, technical communication is more
difficult and technological progress is constrained. This paper defines a core
set of concepts about the software process. These concepts are intended to
facilitate communications and to provide a framework for further definitions.
The definitions focus on essential concepts; however, they do not represent a
comprehensive glossary of common software process terms. Following an
initial overview, this paper outlines the basic process concepts which underlie
the definitions. The definitions are then groupad in four sets: a framework for
process definition, an engineering of process, an enactment of process, and
process properties. This is followed by illustrations of the use of these concepts
in several domains. The paper concludes with some observations on the
definition process.

1 Overview

This report includes descriptions of some basic “core” software process terms. Its purpose is
to provide a common communication framework for the software process and to reflect the
views and findings of leading software process researchers. With the growing scientific focus
on the software process, there is a need for common terms and definitions. it is hoped that this
paper will facilitate communication and foster continued development of software process
technology. It is also hoped that this basic definition set will serve as a foundation for further
definitions and ultimately a comprehensive glossary of software process terminology.

This effort was initiated at the 6th International Software Process Workshop (ISPW6). Several
workshop participants noted the need for a document to describe and define the terms com-
monly used by the software process community. A small group headed by Peter Feiler and
Watts Humphrey volunteered to develop these definitions. The pian was to focus on a core set
of approximately 25 to 30 terms that covered the basic set of process concepts. With input
from many sources, the authors have established a core set of definitions and documented
them in this report. To limitthe numbz2r of terms, terms whose definitions can be easily mapped
to the abstract concepts defined here have been omitted. To constrain the scope of this work,
many terms with applicable existing definitions have also been omitted. Thus, this document
does not represent a comprehensive glossary of terms in the software process domain.

An appreciation of the importance of definitions can he seen from the work of Simon and oth-
ers. They have shown that people retain information in chunks [Simon 81]. People typically
think of these chunks as units, and they have widely varying chunk “vocabularies” with which
they are fluent. There is also evidence that expert knowledge is built by the accumulation of
an expanding store of such “chunks.” It would thus appear that one's ability to think and to

CMU/SEI-92-TR-4 =~ ' 1

communicate can be substantially enhanced with a precisely defined set of rich abstractions.
As a broad community of professionals arrives at a ccmmon understanding of terms to de-
scribe common abstractions, it is better able to communicate succinctly and precisely. In ad-
vanced technical work, communication permits new work to be built on prior achievements.
Improved communication thus facilitates more rapid technological advancement and more
rapid application of that technology to the betterment of humankind.

Process concepts are being applied to software with increasing success ([Humphrey 91],
[Kolkhorst 88]) but the rate ot application of these concepts is limited both by the relatively
primitive state of knowledge in this new field and by the lack of a common and precise basis
for technical communication. The first requirement for precise communication is an agreed-
upon core of terminology. Without such agreement, people are less able to understand others’
work and to build upon it. As software evolves from a craft to an engineering discipline, tech-
nical advances must draw on a broader context than can be reached through personal expe-
rience. The basic reason for this report is to propose an initial foundation for communication
on software process.

Section 2 of this paper provides the conceptual context for the definitinns, followed, in Section
3. by the software process definitions. Many of the terme are accompanied by explanatory
comments. Section 4 illustrates the use of these abstract concept definitions to describe some
common process terme. Section § contains a brief summ.ary of the authors' views on the state
of process techinology and what can be expected in the fture.

2 CMU S5E1-92-TR-4

2 The Software Process Context

The meanings of terms are often dependent on the contexts in which they are used. The def-
initions in this paper were developed within the context of the authors’ views and opinions on
the software process. Rather than require the reader to infer the context for these definitions,
the paper starts with a brief discussion of this context. it is the authors’ view, however, that as
other fields apply process principles, many of these definitions will be found applicable.

A definition framework has been found to be useful for thinking about the software process
and the most critical terms needed to define and discuss it. It has helped to detect gaps and
has clarified the relationships of the various terms. The selected structure is shown in Figure
2-1, which identifies the overall relationships among software and process activities and indi-
cates the activities to which the various definitions relate. This overall structure has been help-
ful in this definition work and it may also be ussful to the reader.

Process Framework

Process ‘ The Process Development Process) Static
Engineering ; Properties
Process ‘ is used to develop and evolve ’ Dynamic
Enactment } Properties
Software C The Software Development Process Static
Engineering _‘ Properties
Process is used to develop and evolve Dynamip
Enactment Properties

<

Software Products

<+

are used 1o develop and evolve

C Resulls for users)

Figure 2-1 Structure of Process Concepts

Y () ()
/ U U U

CMU/SEI-92-TR-4 I o : -

Another context question concerns the sceoe o, G dces 5 issues to be covered. While there is
considerable interest and activity onthe ». & = :5e.(s of process management and process
improvement, the scope of these definit . hugs !.een limited intentionally to definition, mod-
eling, and enactment issues. This does not imply that the broader management issues are not
important, but that their inclusirn would extend the scope of this work far beyond the authors’
original intent. There is al* 1 cro ring literature on process management topics that provides
at least some definitional ¢ "~7..ce ((Humphrey 89}, [Paulk 91)).

Finally, there is no simple way to limit the scope of a definition document. In a subject as new
as the software process, many ordinary terms can have subtie meanings. The selection of
terms to include in these definitions was thus based on two criteria: the term represents an
essential process concept that cannot easily be derived from other concepts, or the term is
currently being used inconsistently. As a result, terms such as model, definition, and fidelity
have been included while subprocess, template, or cue have not.

2.1 A Framework for Process Definition

Software development organizations have found that by defining their processes they improve
thair effectiveness ([Humphrey 91], [Kolkhorst 88)). To the extent that software process defi-
nitions! make high-quality software easier and more economical to produce, they wili become
widely valued and used. This means that software process definitions must be both useful to
the practitioners and reasonably econemical to produce. Experience to date, however, dem-
onstrates that the development of a comprehensive software process definition can be very
expensive and time consuming. Thus, there is a premium on widely applicable means for de-
veloping general purpose process cennitions togetner with techniques ior reusing, tailoring,
and enhancing them. Just as with software, this implies that large scale sottware processes
should be carefully designed and constructed.

Tihie concept of a software process architecture can be best described by examining how or-
ganizations are likely to use process definitions. Rather than navinig a single menoithic pic
cess that all projects must use, they will likely find that different projects will have differing
needs. For example, the development project for enhancing a large, widely-used product will
likely require some different process activities from a project to develop a new program for a
single user. Since process development is expensive, there is considerable motivation for pro-
cess commonality and sharing. This is enhanced by the fact that different projects in the same
organization will likely have many common activitier. Large organizatiors will have many pro-
cess definitions that they wish to share. The more logical and explicit the relationship among
these definitions, the more likely it is that elements of the various project processes can be
shared.

'The reader should note a potentia! confusion with terminology . This paper is about the definition of process terms.
One such term, as used in this paragraph. is "process definion.” which is later dafirad as an implementat.on of
a process design in the form of a partiaily orde’ed set of process sleps that 1s enactat.e.

CMU/SEI-92-TR-4

One way to address the need to share process definitions is to develop a set of general pur-
pose, reusable process elements. Generality, however, requires interfaces and structural
standards; a complete set of such interfaces and standards comprises a process architecture.
A properly conceived process architecture should permit its member process elements to be
more widely used and thus to be more economically viable.

Another question concerns the degree of process refinement. A complex software process
can be viewed as a nested set of abstractions. Each process is composed of subprocesses,
each of which in turn may also have smaller elements. While there is no clear technical limit
to the level of refinement for a software process, there are practical concerns, including the
scale of the projects for which the process is designed, the degree to which the work is parti-
tioned among implementors, the resources and time available for process definition, the level
of capability or understanding of the process users, and the scalability of the process itself.

2.2 Engineering of Processes

The software process can be viewed in much the same way as software. It has many of the
same artifacts and requires quite similar disciplines and methods [Osterweit 87]. It is useful to
think about the software process development life cycle in software development terms. For
example, one should start with clear requirements followed (or, more properly, accompanied)
by architecture and design. Processes must be validated against users’ needs, and limited
prototypes may be needed before full scale development is undertaken. Special testing is re-
quired, as is planning, instantiation, migration from the prior process, and operational support.

Regardless of the degree of testing, all process bugs are not generally found betore general
process instantiation and enactment. Because sottware processes typically require at least
partial human enactment, there is a major requirement and usability problem and it is much
more difficult to do effective testing without end-user involvement. it is likely that only a small
fraction of the total number of process “bugs” will be found in early laboratory testing. It is thus
acvisable to follow process develcpment testing with early ucer prototype testing. Even then,
as the projects evolve and the software professionals gain experience with the process, there
will be many ideas for further improvement. It is thus important for organizations to establish
mechanisms to obtain continual user feedback to guide process repair and evolution.

The software development community is still learning that timely and comprehensive user
teedback is crucial to a quality development process. In developing the software process, it
takes considerable experience before process dzsigners can produce processes that are di-
rectly usable without major modification and evolutionary improvement. Process usability is a
function of process design, user experience, the project domain, and many other factors. Be-
cause user needs vary widely even within a single organization, and because the needs of
each user will change with experience, they must be thoroughly and regularly monitored. Di-
rect, continuous, and nromprehensive user involvement is thus essential for effective process
development and evolution. Such involvement will generate improvement suggesticns that

CMU/SEI-Q2-TR-4 =~ ~ - T h 5

must be handled. This in turn will require process support facilities for tracking, recording, han-
dling, and installing process fixes and enhancements.

2.3 Enactment of Processes

It is desirable t¢ define software processes with sufficient precision so that many of the routire
enactment tasks can be automated. Software engineering remains a highly creative process,
and for the foreseeable future, the opportunities for process automation will likely be limited to
the most routine activities and tasks. As a consequence, software process enactment issues
must consider human agents as well as automation through machine agents. The use of hwu-
man agents raises issues of planning, controlling, monitoring, enforcing, and training. The
software process must aiso be monitored, measured, and repaired and it must relate to other
processes and activities within the organization. There are even questions of unauthorized in-
trusion, improper process modification, and process recovery.

In short, processes have the full range of enactment properties seen with data processing sys-
tems. At one extreme are small, largely autonomous, single string processes; at the other are
highly structured networks of interacting parallel processes. The issues of designing, planning,
monitoring, and controlling must also vary considerably across this spectrum.

2.4 Process Properties

Software processes must be evaluated. What constitutes a good process and how can one
teli if a particular process fits a specific user need? The first basic requirement is that the prop-
erties of a specific process should fit the needs of the project using them. While a comprehen-
sive discussion of process assessment and evaluation is beyond the scope of this paper, there
is a growing body of literature on these subjects. Software process assessments have been
widely used by U.S. software organizations for several years [Humphrey 89] and there are
now a number of organizations that conduct such assessments as a business. The U.S. De-
partment of Defense has also adopted an SEl-developed capability evaluation method for de-
termining the most effective software contractors from among several offerers. The SElis also
developing a Capability Maturity Model which is a comprehensive listing of those practices that
are appropriate for various levels of software process capability |Paulk 91).

The current state of software process technology is such that process evaluation is currently
limited to a rudimentary examination of the presence or absence of various activities. As this
tield evolves, more comprehensive evaluations will be practical. Such evaluations will likely
examine the process structure, its behavior under various conditions, and its adaptability. At
this time, it is premature to attempt quantitative measures of process quality. However, there
are several available qualitative measures. These relate to how difficult the process is to use
and the quality of the results it produces. Other properties concern the degree to which the
process has persistence or whether it merely executes short tasks in response to an external
agent.

CLIU-SEI-€2-TR-4

3 Software Process Definitions

This chapter presents the selected “core” process terms together with their definitions and ex-
planatory comments. The definitions are formatted as follows: the term being defined is in
boldface, the definition for the term is in italics, and any rationale or explanatory information
is in plain text following the definition. Unless otherwise noted, these terms are all detined in
the context of the software process. However, since we have attempted to abstract the terms
from the particular domain of software process, they may have broader applicability. Where
this is confusing, it is suggested that the reader add the word “process” before any term. For
example, "development” equates to “process development.”

The first definition is the term process, which is cefined at a highly abstract level. It is followed
by two terms that refer to pieces of a process.

Process: A set of partially ordered steps intended to reach a goal. While the
term process is used in many different contexts, the context for this definiiion
is software. For software development, the goal is production or
enhancement of software products, or the provision of services. Other
examples are the software maintenance process, the acceptance testing
process, or the process development process.

Process Step: An atomic action of a process that has no externally visible
Substructure. The process step is the basic process abstraction. A process
step is a discrete, bounded activity of finite duration with a level of abstraction
that depends on the enacting context. For example, a process step, as used
by a programmer and included in a process script, would generally require
substantial elaboration to be suitable for a process program.

Process Element: A component of a process. Process elements range from
individual process steps to very large pans of processes. They may be
templates to be filled in, fragments to be completed, or abstractions to be
refined.

Process Script: A process definition that is suitably designed and
instantiated for enactment by a human. Process scripts are designed to adapt
to the particular user's needs and often must be modified as users gain
experience and facility.

Process Program: A process definition that is suitably designed and
instantiated for enactment by machine. Process programs must be designed
to fit the particular computing environmental needs for format and detail and
generally be tested, debugged, and modified much like cornputer programs.

The remainder of the definitions are organized into several groups. First, the Framework for
Process Definition defines foundation terms \hat are used in the subsequent definitions. Next,
the terms in Engineering of Process elaborate on the process of developing process defini-
tions. Concepts concerning the enactment and management of defined processes are de-
scribed in Enactment of Processes. Finally, terms defining properties of defined processes are
discussed in Process Properties.

CMU/SEI-92-TR-4 ~ ' ’ 7

Figure 3-1 illustrates the relationship among many of the process entities and tne actions on them. Here,
tre boxes represent various process elements and the arrows refer to actions. Starting, for example, with
annitial process arcnitecture, a process design is deveioped. From there, one or more process definitions
car be developed. This design and development act:..ty may uncover architectural defects or desirable
¢nntancements that are fed back to evolve the proccss architecture. Further, existing process architez-
tures, designs, and definitions may be tailored to fit c:ianging project needs. With a complete process def-
miticn, a plan is developed for its project use. Thiz involves analysis and adjustment through a control
process and generally involves external constraints. An effective control process will also ulilize measure-
ments through process traces. Cnce an apprepriaie plan is established, the process definition is convert-
ed to enactable form (instantaiecd). Wnen this enactatle process is sent to the init.al enactment state and
a su:table aqent is provided, an enacting process can be initiated. During enactment, the control process
monitors performance and makes appropriate adjustments. This dynamic control phase may involve ref-
grence o thie precess plan, the process definition, ang the process trace.

_—[-—1 1 Tallor
- 'L l 2. Develop
l Process |
5 Architecture 3. Rvolve
- 4 instantiate
- T 8. Inliate
6. Interact
7. Plan
['I 8. Enact
- Procoss Sadady) 9. Monltor
Pa Lesign 10. Analyze
g P— R 11, Adjust
[] wr
P Frocess Process
= Definition 1 Plan
e ¥
! Process
! 1 10 Constraint
ynaciment
\ A Enactable 10
l ate ! P proosss
PP — | {BL——H“ - aamn 3
. L Process
10 Truce
. Contro! »
- Process 1
. Enaoting b
’ Prooess »!"'""
P e————— i S umeinipny ‘/"

o WL
1

Figure 3-1 Process Entitios and Actions

GGl 1 o7 T 4

9

3.1 Framework for Process Definition

This section defines the basic process artifacts. The next section introduces terms that repre-
sent actions on these objects. For example, this section defines process designs as the results
of designing processes.

The structure depicted here differs somewhat from current general usage in the process com-
munity. Here, we have chosen to establish a design hierarchy somewhat analogous to that
used in system engineering. With systems, one starts with an overall architecture and pro-
ceeds {o a design, then an implementation, and then to an operable unit. With processes, the
flow is the same only we replace the term implementation with process definition and operable
unit with enactable process. in prior process parlance, the terms process program and pro-
cess model have been used more or less interchangeably to refer to what are here called de-
fined processes. This new terminology is introduced because we found that more precise
terms are required. The terms model and program continue to be used in a form that is closer
to traditional usage in software and computer science.

Process Architecture: A conceptual framework for consistently
incorporating, relating, and tailoring process elements into enactable
processes. An architecture provides a space of process designs. A process
architecture is often needed when a process must relate to other existing or
future processes. Examples of such needs are process element reuse,
process enhancement, and process tailoring. An essential property of a
process architecture is its ability to indicate whether a process element is or
is not compatible with the architecture.

Process Design (noun): An embodiment of a process architecture that
establishes the architectural options and parameters, the existing elements
to be reused, the structure and behavior of the new elements, and the
relationships among these elements. A process design may be for a specific
project, an entire organization, or possibly for larger classes of projects or
organizations. A process design is produced to meet specified goals. The
completed design includes the process definition and instantiation standards
and intertaces, the overall process structure, and the functions and
relationships of the process elements. This may include reusable process
definitions and partially or fully populated process elements. The design
specifies the selection choices to bs made during process development.

Process Definition: An implementation of a process design in the form of a
partially ordered set of process steps that is enactable. At a lower level of
abstraction, each process step may be further refined into more detailed
process steps. A process definition may consist of (sub)process definitions
that can be enacted concurrently. Process definitions whose levels of
abstraction are refined fully are referred to as complete or fit for enactment.
Completeness, however, depends on context since a definition that is
complete for one process agent may not be for another. A process definition
may be for a class of projects, a specific project team, or an individual
professional.

o S T T T T T T T T OMUSEL92-TR-4

Process Plan: A specification of the resources necessary for the enactment
of a process definition, the relationships of these resources to process steps,
the products produced by these steps, and any constraints on enactment or
resources. Process plans guide the instantiation and use of processes while
project plans guide the design, development, evolution, and tailoring of
processes (or products). Process plans are created with respect to a process
definition containing process steps to be planned and managed. Resources
include human process agents, computer resources, time, and budgets.
Relationships refer to the estimation or assignment of resources to process
steps in order to meet project objectives. The more common term of project
plan typically contains work packages, i.e., a process definition at a certain
level of abstraction, together with one or more process plans. The distinction
between the project plan and the process plan is important because effective
project planning is facilitated by the existence of a defined process. This often
requires that the process plan be established and implemented in paralle!
with or even before the project plan. Because of the time and resources
required, the process design and development must be done in advance of
the project need.

Enactable Process: An instance of a process definition that Includes all the
elements required for enactment. An enactable process consists of a process
definition, required process inputs, assigned enactment agents and
resources, an initial enactment state, an initiation agent, and continuation and
termination capabillities. A process that lacks any of these conditions is not
enactable. It should be noted that wiile enactable processes may not actually
terminate, atleast for long periods, they must have a termination capubility so
they can be stopped in an orderly way when necessary.

Process Model: An abstract reprasentation of a process architecture,
design, or definition. Process models are process slements at the
architectural, design, and definitions level, whose absiraction captires those
aspects of a process relevant to the modeling. Any representation of the
process is a process model. Process models are used where use of the
complete process is undnsirable or impractical. A process model can be
analyzed, validated, and, if enactable, it can simulate the modelad process.
Process models may be used to assist in process analysis, to ald In process
understanding, or to predict process behavior.

3.2 Engineering of Processes

This section includes discussions of concepts related to the engineering of processes. The en-
gineering of a process is a process that itself can be defined and engineered.

Development. The act of creating enactabls processes. It may Includo
planning, architecture, design, Instantlation, and validation. If thg process
development activity is for a complete process, all or most of thuse activities
should be conducted. If, however, the developmont effort is to repalr of
anhance an existing process, an abbreviated set of activitivs might ba used.

CMU/SEI-92-TH-4 11

Talloring: The act of adagling process designs and process definitions to
support the enactment of a process for a particular purpose. Process talloring
may involve the use of process templatos and may result in specialized
process definitions.

Pionning: The act of developing a process plan for the enactment of a
process definition. Process planning should typically precede process
instantiation and enactment. If the process being piannod, for example, was
process development, then the process plan would be parn .of the process
development project plan.,

Instantiation: The act of creating enactable processes from process
delinitions and process plans. Process instantiation may bo static or dynamic.
in static instantiation, the complete process definition is instantiated before
enactinant. In the dynamic caso, the process development, the instantiation
of individual stops of that process, and the onactment of these steps may be
interieaved. The dynamic case permits enactment of processes to be started
belore their definition Is complete. Process ingtantiation may involve the
packaging of various process options and tallorings inlo a set of process
scripte or the assignment of resources to planned process steps. In this latter
case, instantiation must be accompanied by both a procoss definition and a
process plan. in some cases, it may be dosirable to simultaneously plan
multipln instantiations to reduce the amount of planning and improve the
otficiency of ingtantiation.

Bvolution: The acot of changing exiating procese oelinitions to meet naw
newds. Process evolution s typically intended 10 correct known problems or
1o evolve the process to meet new needs. Process ovolution should be
planned and carefully managed to insure tha continuing integrity and quality
of the resulting products. Procees delinitions may evoive without atfecting
oxinting enacting instances, or they may evolve together with their enacting
instances. Thig lattar case is needed for non-stop or long-running processes.

3.3 Enactment of Processes

Tormg dealing with enactment of proceases are grouped into four subgroups: Process Enact-
marnt, Process Control, Process Authority, and Process Assurance. Process Enac':nent intro-
ducna terins concerning the machanics of enacting a process. Process Control addresses the
monitoring, analysis, and adjustment of a process to diract or 1o improve its behavior. The Pro-
cuss Authority terms deal with authorization, appra'sal, delegation, and intrusion, Process As-
suranco doais with the methods of adapting a8 process definition to address unexpected
situations, and with the means for ensuring propur enactment of the established process del-
Inition,

Process Enactment

Agent: An anlity that onacts a process dofinition. This entity may be a person
following @ process script or a machine executing a process program, The
procoss agent intorprets the enactable procoss.

2 CMU'SEI-92-TR-4

Process Constraint: A defined condition that an enacting process must
satisfy. Process constraints typically relate the enacting process to external
processes or agents. Examples of process constraints are procuct
requirements, authorizations, standards, and procedures. Such constraints
may be Iincluded in process designs, process programs, process scripts,
process architectures, or process plans.

Enactment State: The state of a particular enactable process. The
enactment state consists of:

« enactment flow pointers that refer to the steps in the process
definition currently being enacted

« State information reflecting the satisfaction of process constraints
« the satisfaction record of conditions and dependencies

e current resource utilization records

« the status of the work products being produced

The process enactment state is changed through enactment of a process
step, through interaction with a cooperating process, or through initiation,
suspension, resumption, or termination by a controlling process. The
specification of the process state must also consider the states of other
related entities, whether precisely defined or not. Examples of such related
entities are the process plan, the associated product. the project, and the
organization. The process enactment state is associated with an instance of
an enactable process. The enactable process, in turn, identifies the specific
version of the process definition being enacted. Since the process steps may
have various levels of abstraction, their process states must also have
equivalent levels of abstraction.

Enacting Process: An active enactable process, i.e., an enactable process
whose agent or agents are executing the process definition. An enacting
process may be in a suspended state if an assigned process agent is not
available or other process constraints are not satisfied.

Interaction: The interchange between two cooperating enactable processes.
This intarchange may be for the purpose of communication (intercnange of
data} or coordination (interchange of control). The interchange may be
synchronous or asynchronous. and its state data may be accessible or
hidden. That is, one process may have access to state data for other
processes while they have no access to its state data. Andrews discusses a
set of process interaction paradigms in distributed systems, many of which
can also be applied to the software process [Andrews 91).

Automation: The use of machine process agents in process enactment.
Here, the use of a machine agent is facilitated by a fully developed process
definition embodied in a suitable process program.

Frocess Control

Control Process: A process that exists separate from an enacting process,
but has access to its state data and can affect its enactment. A control
process, for example, may initiate, monitor, adjust, or terminate its controlled
process or processes. The form of process control is a key process design

CMU/SEI-92-TR-4 ~ e

decision. It may be fully centralized or distributed. In the distributed case, for
example, one can visualize each process step behaving like a program
procedure that invokes other steps. This would permit the design of recursive
processes where steps may call themselves.

Monitoring: The observation of the enaciment of a process. Monitoring is
performed by a separate observer or control process that monitors the
enactment state of the observed process. This observation is performed
concurrently and typically with minimum interference in the behavior of the
process being observed. Process monitoring may be performed by the same
process agent that is enacting the process or by a separate agent. The
purpose of process monitoring is to gather data on the enactment state and
process resource utilization. This data is then used to provide a process
measurement database for use in process planning, analysis, controi, and
adjustment.

Process Trace: A sequence of snapshots of the enactment state reflecting
the observed enactment history. Tracing is one means of monitoring and
measuring a process. A trace may be of resource utilization, enaction time,
error occurrences, or any other desired parameters.

Analysis: The use of process traces, process definitior.s, and process plans
to assess process behavior. Process analysis may be performed to
determine if an enacting process is conforming to process const aints, if it is
meeting plan objectives, or it process plan adjustments or process definition
changes are required. Process analysis is also an important part of process
evolution.

Adjustment: The influence of a control process over the enactment of
another process. This influence may be guided by analysis of observed
process data and exercised through changes to the process enactment state,
through reassignment of resources, or through changes to the process
definition.

14 ST T T TCMUSEL92-TR-4

Process Authorlty

Approval: The granting of the right to enact a planned process or process
step. Approval is given in acccrdance with the established process definition
and process plan by an authorized process agent. Lack of approval from a
designated responsible authority (controlling process) constitutes a violation
of process constraints. For example, Mr. Jones rnay approve a specific
process change. His signature is the approval.

Authorlzation: The granting of the right to give approval. The establishment
of explicit authorities and responsibilities is an essential part of process
planning and instantiation. For exampie, Mrs. Smith authorizes Mr. Jones to
approve process changes.

Delegation: The authorizing of other agents to enact process steps that the
delegating process (agent) is authorized to perform. Delegation possibly
involves refinement of the process definition before the responsibility to enact
is transferred. For examp.e, Mr. Jones may delegate his approval authority to
Ms. Doe.

intruslon: Unauthorized process monitoring, adjustment, or repair. One
example of intrusion could be a case where a project-specific tailoring
improperly changes the baseline process.

Process Assurance

The first two terms assure correct enactment by modifying the enacting process, while the sec-
ond two items refer to activities that focus on assuring that the process enactment follows the
process definition.

Repalr: The temporary correction or adjustment of @ non-conforming process
to meet an Immediate need. Repairs are typically required when there is
insufficient time for process evolution or when the adjustment is a unique
gvent. Process repair actions may result in process improvement proposals
for process evolution.

Recovery: The adjustments required to allow continuing enactment aiter a
process Incident. Process incidents may result from a process intrusion, the
occurrence of an event that was not anticipated by the process definition, or
a process definition defect.

Enforcement: The activities used to insure that process enactment conforms
to process constraints. Enforcement may or may not be effective, depending
on the capabilities of the process agent and the enforcement methods used.
This is particularly the zase with human process agents. Enforcement may
aleo include the Initiation of (possibly predefined) consequences in case of
constraint violation.

Guldance: The activity of providing the enacting process agent with
assistance regarding the legal steps at any point during process enactment.
Guidance may be provided by a control process and may involve process
cues, process Interaction, or process management.

CMU/SEI-92-TR-4 ' ' ’ 15

3.4 Process Properties

The process property terms relate to the properties of entire processes as well as to the
properties of their elements. The process property terms are divided into two categories,
static and dynamic. Static properties concern the characteristics of process definitions,
enactable process, and process results. The dynamic properties concern the enactment
behavior of processes.

Static Process Properties

Accuracy: The degree to which the product produced by the process
matches the Intended result. Note that neither the product produced by an
accurate process nor the product intended by that process may match the
actual need.

Fidelity: The faithfulness with which a defined process is followed. Fidelity
concerns the degree with which the human or machine agents performing the
process exactly follow the defined actions. Fidelity is related to enforcernent.
Effective enforcement guarantees high levels of fidelity, although high levels
of tidenty may occur without stringent enforcement.

Fitness: The degree to which the people or machines enacting the process
can faithfully follow actions it specifies. A fit process definition is thus
designed 8o the enacting process agent can faithfully follow it, while an unfit
process definition may be so poorly represented as to be impractical,
inconvenient, or uninteliigible. Note that process fitness may be achieved
through other means than process design and definition. Examples are
training and technical support.

Precislon: The degree to which the process definition specifies all the
actlons needed to produce accurate results. That is, a precisely defined
process executed wiih fidelity produces an accurate result.

Redundancy: A process step Is redundant if its removal would not alter the
results of the process, given that the process is executed with fidelity.
Redundancy may be added to compensate for human or other errors in
process anactment, i.e., low process fidelity.

Scalabllity: The breadth of activities for which the process definition is
designad. This might include the ranges in numbers of people, size of
product, time duration, product life cycle, or development environment for
which the process is fit and precise. A highly scalable process is thus likely to
be of more general value than one that is less scalable.

Maintainablllity: The degree to which the process Is dasigned to readily
permit static or dynamic process evolution. Maintainability is achieved
through localization of information, a cleanly structured design, and wel!
architected interfaces. The purpose of such design approaches is to limit the
Impact ot process changes and thus simplify the process change process.

CMU'SEI-92-TK-4

Dynamic Process Properties

Dynamic process properties concern the singular behavior of a process and the nature of its
interactions with other processes. The first three properties concern singular process behav-
ior, while the latter two deal with the relationships among processes.

Liteness: The degree to which an enacting process that contains concurrent
interacting sub-processes deals with deadlock, starvation, and termination.
The degree of lifeness indicates whether a process is intended to terminate
and does terminate, or whether it is intended not to stop and does not stop.
Deadlock refers to the situation when two or more interacting processes wait
for eacn other. Starvation resuits from improper process design or from
excessive diversion of critical enactment resources, not wllowing the process
to progress according to pian.

Robustness: The degree to which the process rejects intrusion. A robust
process, for example, would typically be maintained under configuration
control, thus rejecting unauthorized changes to the process definition.

Fault Tolerance: The degree to which the process, once an intrusion has
occurred, either continues to produce accurate results or recognizes the
inaccuracy of its results and initiates corrective action. Here, for example, a
disciplined change management system would insure that project-specific
changes were isolated from the baseline process.

Autonomy: The degree to which an enacting process operates
independently of other processes. The degree of autonomy indicates the
extent to which the process and all its sub-processes are independent of
other processes.

Responsiveness: The degree to which an enacting process proactively
initiates and controls other processes, or reactively responds to events from
other processes. A highly responsive process thus may be highly incrementai
and frequently in an enactable condition waiting for interactions to trigger
further enactment. A high degree of responsiveness may entail a reduction in
resource utilization efficiency.

CHTSEI 82 TRE " C e SR

4 Domain-Specific Use of Process Concept
Definitions

The following are some examples of process terms in several domains that are expressed us-
ing this core set of terms. The purpose of these examples is to illustrate the use of the core
set of terms for defining additional process terms and to provide some concrete examples of
these concepts and definitions. We have chosen the domains of project management, oper-
ating systems, and process engineering.

4.1 Project Management Domain

Role: The responsibility for enacting a process or subprocess definition. An
agent, when enacting a process, is referred to as assuming the process role.
In this role, the agent is limited to the set of operations reflected in the steps
of that process. These operations are specified in the script for a human
agent or in the program for a machine agent. A process may have more than
one participating agent.

Task: A process step typically enacted by a human, requiring process
planning and control. This definition describes the term task as it is typically
used in project management or for managing empioyee work assignments.

Contract: A formal agreement on a process plan and a set of process
enactment states and resuits. This agreement constitutes a process
constraint, whose violation has (possibly legal) consequences.

Pollcy: The guiding principles for process development and/or enactment.
They often result in process constraints, usually at a high level, that focus on
centain aspects of a process and influence the enactment of that process.

Project: An enactable process or enacting process, whose architecture has
control processes for managing the project and enacting processes for
performing the project tasks. A project could be to develop a product or to
develop a process definition.

Project Management: An enactable or enacting process whose goal is to
create project plans and, when authorized, instantiate them, monitor them,
and control their enactment. These responsibilities are commonly known as
project planning, project control, and process control. When properly
performed, the project management function is typically highly interactive in
reviewing and approving process plans, in using process analysis results,
and in making process adjustments.

Project Plan: The project plan consists of a process definition at a level of
abstraction such that its process steps have to be managed in the context of
one or more plans (i.e., resources, responsibilities, and schedules). When
engineering of the process is involved, project plans should explicitly
incorporate appropriate process plans.

CMU/SEI-92-TR-4 S) o T T T 19

Project Manager: A human agent with overall responsibility for enacting the
control process. With a properly designed process, this includes all aspects
of controlling and managing project execution. Project managers are also
frequently involved in such related activities as requirements determination,
goal setting, resource allocation, contract negotiation, systems partitioning,
coordination, and post contract evaluation.

4,2 Operating System Domain

In an ACM Computing Surveys article, Horning and Randall have surveyed and discussed op-
erating systems concepts as they relate to process support [Horning 73). The terms used by
the authors reflect the vocabulary used by the research community at the time. The table in
Figure 4-1 lists some of the most prevalent terms and relates them to the definitions in this
paper. The reader may also notice that, in the context of operating systems, there is less em-
phasis on a priori planning, while increased emphasis is placed on dynamic scheduling and
different forms of process interaction. The terms abstraction and refinement have been implic-
itly introduced in the context of the definition of process steps in this paper, while they have
been spelled out explicitly by Horning and Randall.

4.3 Process Engineering Domain

This domain concerns the process for developing processes. Such a process cevelopment
process can be developed, tailored, planned, instantiated, evolved, and enacted. Further,
since large organizations would generally need many different kinds of processes and since
many of these processes will be ot different magnitudes and in different evolutionary stages,
the organization woul!d also generally need more than one process development process. This
process family, or system of process development processes, would likely include a process
architecture, a library of reusable process definitions, and various standards, templates, and
forms.

The process architecture would relate all members of this process family. It might have the
following sections:

® definitions of the majcr process elements and their functions
* naming conventions and standards

¢ standard process templates or formats

¢ interface specifications

e composition and tailoring rules

The library of reusable process elements would be used as common building blocks to con-
struct multiple process definitions. These reusable elements would be developed consistently
with the architecture and would be usable with any process definition that met the same stan-
dards. Some examples of such reusable elements are Process Development Planning, Pro-
cess Requirements Definition, and Process Development Estimation. This last example would
be one of the lower level reusable elements referenced oy Process Development Planning

” S : - T "CMU/SEI-92-TR-4

Examples of the standards needed by the process development process are Process Review
Standards, Process Requirements Standards, and Process Naming Standards. Typical tem-
plates would show the formats for process development plans, the contents of a process de-
velopment estimate, and the structure and format for a process development architecture.

CMU'SEI92-TRA

Typical forms would be the Process Development Estimate and the Process Improvement

Proposal.
Operating system term | Process concept Explanation
Process Process o
Process abstraction Not explicitly defined A process step in form of sub-
routine or process embodying
the abstraction
Process refinement Not explicitly defined The act of defining the substruc-
ture of a process step
Process state Enactment state State of execution of a process
Computation Process trace L
Processor, machine Agent Typically refers to machine
agent
Exact realization Precision) i 7 o
Process interaction Interaction Three forms: cooperation, com-
o petition, interference e
Interpretation Enactment
Image Enactable process Executable load image of a pro-
. L gram
Frogram Process definition
Language description Not explicitly defined Notation to express process
definition
Executive Contro! process giving Focus on adjustment of enact-
approval for enactment | ment state
Debugger Control process Focus on monitoring, analysis,
performing repair and adjustment of enactment
with respect to desired behav-
tor of process definition

Figure 4-1 Process Term Sample in the Operating System Domain

22 T 7 77 CMU’'SEI-92-TR-4

Examples of end-user process development scripts are the foliowing:

1. The process for developing a new family of processes would include a pro-
cess architecture, a reusable element library, and end-user scri;.ts. An exam.
ple of such a process family would be the complete set of software develop-
ment and maintenance processes needed by a large software organization,

2. The process for developing a new end-user script that conformed to an
existing process architecture would include new scripts and possibly some
new or modified reusable process elements. An example of such & process
might be the maintenance and support process for a newly developed
goftware product.

3. The process for enhancing an existing process deafinition to meot some now
need would likely include modifications to the existing procesas script with
possibly some new reusable element definitions or modifications. An
example of such a process enhancement would be the modification of a
software development process to conform to a newly dofinod customor
acceptance testing roequireament. in the case of more substantial process
modifications, changes or additions to the process architecture might bo
neoded as woll.

GlAauL e T4

5 Conclusions

This core set of process detinitions and concepts is intended both to facilitate the broader ap-
plication of theso concepts In the software community and to serve as a foundation for further
dofinitional work. Since software process technology Is in an early state of development, it is
assumod that these core terms will undergo evolutionary change and that many more terms
will be added. it is, however, hoped that this core set will be sufticient to faciiitate communica-
tion on the software process and various process related domains.

The development of theso dolinitions has been & surprisingly rewarding process. Not only has
the work of listing and defining thuse core concepts and terms clarified and sharpened our
views, but we have learned a great deal from interacting with many of our associates. We have
also tound that there is anormous interast in this subject. Software process technology is new
and davoloping rapidly, and is just beginning 1o be structured and codified. It is an important
and uselul field for practitioners, and it i a rich and largely unexplored field for research.

As we delve into this subjoct, it is clear that there is a richness and substance to the technology
that is barely discernible on the surface. In principle, we are talking about the design of pro-
couses that will permit falliblo humans, with the ald of machines, to produce infallible products.
To do this economically and to responsively meet societ, 's needs is a challenge of the first
order. The challenge of software process research is thus to find economic and eftective ways
to have many people cooperatively perform complex and precise intellectual 1asks. Success
willbo moasured both by tho offectiveness with which these processes meet users' needs and
by tha dogrue to which they contribute to making software engineering a rewarding and fulfill-
ing protession. As this field evolves, the technology it develops will undoubtedly be of value to
many othar human activities.

CMUW/SEL-92-TH-4 T 25

6 Acknowiedgments

This work would not have been possible without the many perceptive and helpful comments
we have received from ail over the world. Many people have provided us suggestions and en-
couragement and many others have sent us pages of detailed comments on our various
drafts. This work has clearly taken a great deal of time and we are most grateful. With very few
exceptions, we have incorporated these inputs in this paper and its quality has thereby been
greatly improved. We particularly want to thank Ed Averill, Judy Bamberger, Maryse Bourdon,
Fanny Camilleri, Bill Ett, itana Gimenes, Jim Hamilton, Hal Hart, Karen Huff, Letizia Jaccheri,
Jim King, Nazim Madhavji, Mark Paulk, Sam Redwine, and Dieter Rombach for their invalu-
able help. The reviewing and editing of this paper was also greatly assisted by the kind support
of several reviewers. Our particular thanks go to Ed Averill, Mary Beth Chrissis, Alan Christie,
Bill Curtis, Susan Dart, and Mark Paulk. Our thanks also to Dcrothy Josephson for her helpful
and timely support with the many revisions and drafts.

CMU/SEI-92-TR-4 T ’ R ' n7

Table 1 Index of Process Definitions

Term Page Term Bage
Accuracy 16 Planning 12
Adjustment 14 Precision 16
Agent 12 Process 7
Analysis 14 Process Architecture 10
Approval 15 Process Assurance 15
Authorization 15 Process Authority 15
Automation 13 Process Constraint 13
Autonomy 17 Process Contro! 14
Control Process 14 Process Design 10
Delegation 15 Process Definition 10
Development 11 Process Element 7
Enactable Process 11 Process Enactment 12
Enacting Process 13 Process Model 11
Enactment State 13 Process Plan 11
Enforcement 15 Process Program 7
Evolution 12 Process Script 7
Fault Tolerance 17 Process Step 7
Fidality 16 Process Trace 14
Fitness 16 Recovery 16
Guidance 18 Redundancy 16
Instantiation 12 Repair 15
Interaction 13 Responsiveness 17
Intrusion 15 Robustness 17
Lifeness 17 Scalability 18
Maintainability 16 Tailoring 12
Monitoring 14

28 CMUSEL 02-TH-4

References

|Andrews 91) Andrews, G.R., "Parac - - -or Process Interaction in Distributed Systems,”
ACM Computing Surveys, wviarch 1891, pp. 49-90.

{Hornig 73] Horning, J.J. & Randell, B., "Process Structuring,” ACM Computing Sur-
veys, March 1973, pp. 5-24.

{Humphrey 81) Humphrey, W.S., Snyder, T.R. & Willis, R.R,, “Software Process Improve-
ment at Hughes Aircralt,” IEEE Software, July 1891, pp. 11-23.

[Humphrey 89) Humphrey, W.S., Software Process Management, Addison-Wesley, Read-
ing, MA, 1988,

{Kolkhorst 88) Kolkhorst, 8.Q. & Macina, A.J. "Developing Error-Free Software,” Proceed-
Ings of Computer Assurance COMPASS '88, NIST, IEEE, July 1988.

[Osterweil 87) Osterweil, L.J., "Software Processus are Software T00," Proceedings of 9th
International Conference on Software Engineering (ICSES), IEEE Comput-
er Soclety Press, April 1987.

(Paulk 91) Paulk, M.C., Curtis, B. & Chrissis, M.B., et al., Capability Maturity Mode!
for Software, Software Engineering Institute Technical Report CMU/SEI-91-
TR-24, DTIC ADA240603, Carnegie Mollon University, Pittsburgh, PA, Au-
Qust 1991,

{Simon 81) Simon, H.A., "Studying Human Intelligence by Creating Artificial Intelli-
gence,” American Scientist, vol. 68(3), May-June 19881, pp. 300-309.

CMU/SEI-92-TR 4 Tt e e : L

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIPICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ls. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S
CMU/SEI-92-TR-04

$. MONTTORING ORGANIZATION REPORT NUMBER(S;
ESD-TR-92-04

6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute é“é:’*’““"“’ SE! Joint Program Office

6. ADDRESS (City, Sute and ZIP Code) 7b. ADDRESS (City, Suste and ZIP Code)

Carregie Mellon University ESC/AVS

Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8s. NAME OFFUNDING/SPONSORING 85 OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

SEl Joint Program Office ESC/AVS

F1962890C0003

8c. ADDRESS (Cuty, Stste and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNTT
ELEMENT NO \NO. N\NO NO.
63756E N/A N/A N/A

11. TITLE (Includs Secusity Classification)

Software Process Davelopment and Enactment: Concepts and Definitions

12. PERSONAL AUTHOR(S)
Peter H. Feiler and Watts S. Humphrey

13a. TYPE OF REPORT 13b. TIME CGVERED
Final FROM T

14. DATE OF REPORT (Yt, Mo., Day)
September 1992

15. PAGE COUNT
30

16. SUPPLEMENTARY NOTATION

ll7~ COSATI CODES 18. SUBJECT TERMS (Cantinue on reverse of necessary and identify by biock number)
P SUB. GR. .

FEELD GROU UB. GR enactment of process process properties
engineering of process software process concepts
process cdevelopment

19. ABSTRACT (Conunue on reverse if necessary and idenufy by vlock number)

The scientific treatment of the software piocess is relatively new and, as with any new field, the initial terminol-
ogy is often confusing. When terms can have a diversity of meanings, technical communication is more difficult
and technological progress is ccnstrained. This paper defines a core set of concepts about the software pro-
cess. These concepts are intended to facilitate communications and 1o provide a framework for further detini-
tions. The definitions focus on essential concepts; however, they do not represent a comprehensive glossary
of common software process terms. Following an initial overview, this paper outlines the basic process con-
cepts which underlie the definitions. The definitions are then grouped in four sets: a framework for process
definition, an engineering of process, an enactment of process, and process properties. This is followed by
illustrations of the use of these concepts in several domains. The paper concludes with some observations on

the definition process.

(pieascium overn)

20 DISTRIBUTION/AVAILABILTY OF ABSTRACT
UNCLASSIFIED/UNLIMITED SAME AS RPTDTIC USERS .

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified, Unlimited Distribution

224. NAME OF RESPONSIBLE INOIVIDUAL

22b. TELEPIIONE NUMBER (Inciude Area Code) 22c OFFICE SYMBOCL

ESC/AVS (SE!)

DD FORM 1473, 83 APR

Thomas R. Miller, Lt Col, USAF (412) 268-7631

EDITION of | JAN 7318 CBSOLETE

B ————————————
UNLIMITED, UNCLASSIFED
SECLRITY CLASSIFICATION OF THIS

